

DEPARTMENT OF

SEKHUKHUNE SOUTH AND EAST DISTRICT

MARKS: 100

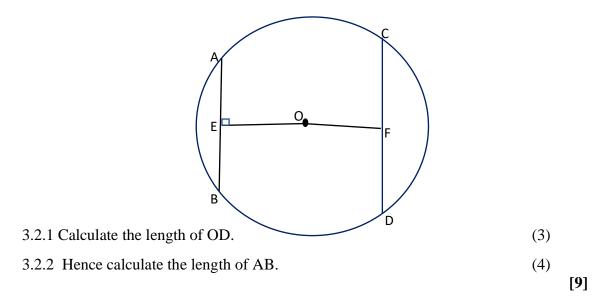
DURATION: 2 HOURS

INSTRUCTIONS:

- 1. This question paper consists of 5 questions, answer all of them.
- 2. Diagrams are not necessarily drawn to scale.
- 3. Number your answers exactly as the questions are numbered.
- 4. Write neatly and legibly.

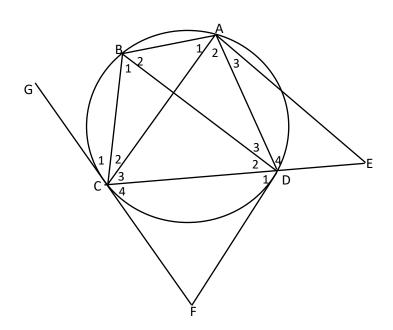
Solve for *x* in each of the following: 1.1 2x(x-3) = 01.1.1 (2)1.1.2 $3x^2 - 2x = 4$ (correct to TWO decimal places) (5) 1.1.3 $(x-1)(4-x) \ge 0$ (4) 1.1.4 $\sqrt{x+5} = x-1$ (5) Solve for x and y simultaneously if: 1.2. (6)x + 4 = 2y and $y^2 - xy + 21 = 0$ Discuss the nature of the roots of the equation $2(x - 3)^2 + 2 = 0$ 1.3 (4) Determine the value(s) of p if $q(x) = -2x^2 - px + 3$ has a maximum 1.4 (4) value of $3\frac{1}{2}$.

[30]

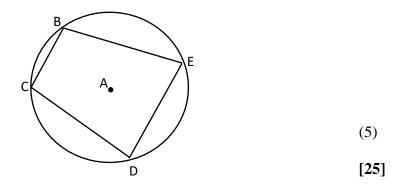

[16]

QUESTION 2

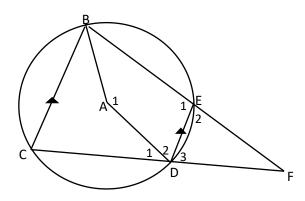
2.1	Simplify f	ully, WITHOUT using a calculator: $\frac{3^{2x+1} \cdot 15^{2x-3}}{27^{x-1} \cdot 3^x \cdot 5^{2x-4}}$	(4)
2.2	Solve for 2	x	
	2.2.1 $(\frac{1}{2})$	$(\frac{1}{2})^x = 32$	(3)
	2.2.2 2	$2^x - 5.2^{x+1} = -144$	(3)
	2.2.3 2	$2 - 16x^{-\frac{3}{2}} = 0$	(3)
	2.2.4 ^x	$\sqrt[6]{9} = 243$	(3)


QUESTION 3

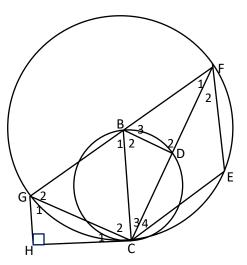
- 3.1 Complete: The line drawn from the centre of the circle perpendicular to the (1) chord
- 3.2 The figure below, AB and CD are chords of the circle with centre O. OE⊥AB. CF=FD. OE=4cm, OF=3cm and CD=8cm.


Downloaded from Stanmorephysics.com

In the diagram below, points A, B, C and D lie on the circumference of a circle. FG and FD are tangents to the circle at C and D respectively. CD is produced to meet AE at E. Furthermore, \angle GCA= 78⁰, \angle CBD = 41⁰ and \angle BDA = 34⁰



4.1.1 Write down, with reasons, THREE other angles that are each equal to 41°	(6)
4.1.2 Determine with reasons the sizes of the following angles:	
(a) \hat{D}_2	(3)
(b) \hat{B}_{2}	(3)
(c) \hat{D}_4	
(d) \hat{F}	(3)
	(2)
4.1.3 Determine, with reasons, whether <i>CADF</i> is a cyclic quadrilateral or not	(3)
CHDT is a cyclic quadrilateral of not	(3)

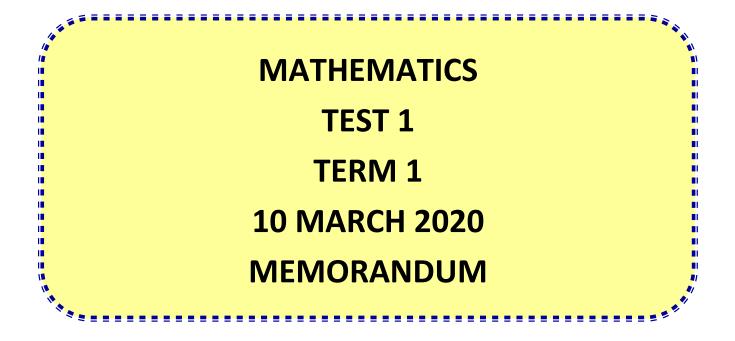

4.2 In the diagram below, A is the centre of the circle and BCDE is a cyclic quadrilateral. Prove the theorem that states that $\angle B + \angle D = 180^{\circ}$

5.1 In the figure, BCDE is a cyclic quadrilateral. BC//ED in the circle with centre A. BE and CD produced meet at F. $\angle D_3 = x$,

- 5.1.1 Show that FE=FD (4) 5.1.2 If $\angle D_3 = x$, determine the value of $\angle F$, in terms of x. (2)
- 5.1.3 Hence, show that BADF is a cyclic quadrilateral (4)
- 5.2 B is the centre of the larger circle CEFG. BC is the diameter of the smaller circle CDB. HC is a tangent to both circles at C. $GH\perp$, $\angle C_1 = x$.

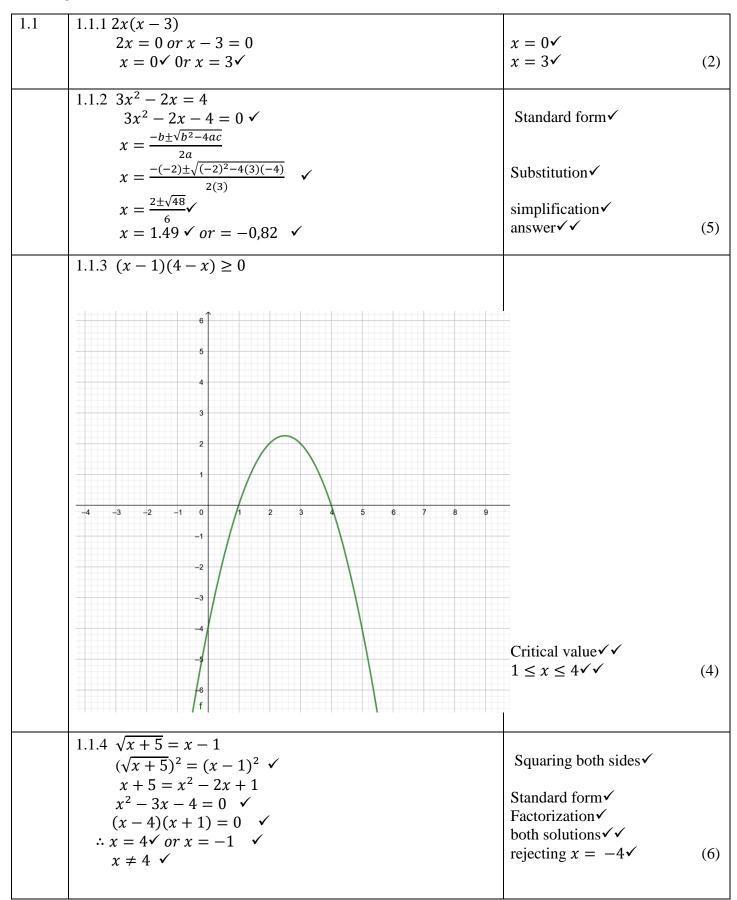
Downloaded from Stanmorephysics.com

5.2.1 Prove that CG bisects $\angle BGH$.	(5)
5.2.2 Prove that \angle GBD = \angle CEF.	(5)
	[25]


LIMPOPO PROVINCIAL GOVERNMENT

REPUBLIC OF SOUTH AFRICA

DEPARTMENT OF EDUCATION


SEKHUKHUNE SOUTH AND EAST DISTRICTS

GRADE 11

Marks: 100

Marks: 2 Hour

1.2	$ \begin{array}{ll} x + 4 &= 2y & \cdots (1) \\ y^2 - xy + 21 &= 0 & \cdots (2) \\ x &= 2y - 4 & \cdots (3) \checkmark \end{array} $	$x = 2y - 4\sqrt{2}$
	$\therefore y^{2} - y(2y - 4) + 21 = 0 \checkmark$ $\therefore y^{2} - 2y^{2} + 4y + 21 = 0$ $\therefore -y^{2} + 4y + 21 = 0$	substitution✓
	$\therefore y^2 - 4y - 21 = 0 \checkmark$ $\therefore (y+3)(y-7) = 0 \checkmark$ $\therefore y = -3 \text{ or } y = 7 \checkmark$	standard form√ factors√ y-values√
	$ ∴ x = 2(-3) - 4 \text{ or } x = 2(7) - 4 ∴ x = -10 \text{ or } x = 10 \checkmark $	x-values \checkmark (6)
1.3	$2(x-3)^{2} + 2 = 0$ 2(x ² - 6x + 9) + 2 = 0	
	$2x^2 - 12x + 20 = 0\checkmark$	Standard form✓
	$\Delta = b^2 - 4ac$ = $(-12)^2 - 4(2)(20)$	substitution✓
	= 144 - 160 = -16 \checkmark	-16✓
	∴ roots are non real/imaginary ✓	conclusion \checkmark (4)
1.4	$g(x) = 2x^{2} - px + 3$ $x = \frac{-b}{2a} = \frac{-(-p)}{2(-2)} = \frac{-p}{4} \checkmark$	$x = \frac{-p}{4} \checkmark$
	$y = -2\left(\frac{-p}{4}\right)^2 - p\left(\frac{-p}{4}\right) + 3\checkmark$	Substitution ✓
	$-2\left(\frac{-p}{4}\right)^2 - p\left(\frac{-p}{4}\right) + 3 = 3\frac{1}{8}$ $-\frac{p^2}{8} + \frac{2p^2}{8} = \frac{1}{8} \checkmark$ $p^2 = 1$	Simplification ✓
	$p = \pm 1 \checkmark$	$P = \pm 1 \checkmark$
	OR	
	Max value= $\frac{4ac-b^2}{4a}$ $\frac{4(-2)(3)-p^2}{4(-2)} = \frac{25}{8}$	
	$\frac{\frac{4(-2)}{-24-p^2}}{\frac{-24-p^2}{-8}} = \frac{25}{8}$ -192 - 8p^2 = -200 \checkmark	
	$8p^2 = 8$	
	$p = \pm 1 \checkmark$	(4)
QUEST	TION 2	
2.1	$\frac{3^{2x+1} \cdot 15^{2x-3}}{27^{x-1} \cdot 3^{x} \cdot 5^{2x-4}}$	
	$=\frac{3^{2x+1}\cdot 3^{2x-3}\cdot 5^{2x-3}}{3^{3x-3}\cdot 3^{x}\cdot 5^{2x-4}} \checkmark \checkmark$	Prime bases ✓ ✓

		Simplification✓	
	$= 3^{2x+1+2x-3-3x+3-x} \cdot 5^{2x-3-2x+4} \checkmark$		
	= 3.5		
	$= 15 \checkmark$	Answer✓	(4)
2.2	2.2.1 $(\frac{1}{2})^x = 32$	Game have (
	$2^{-x} = 2^5 \checkmark$	Same base✓ Equating indice✓	
	$-x = 5 \checkmark$ $\therefore x = -5 \checkmark$	answer√	(3)
	$\therefore x = -5 \checkmark$ 2.2.2 $2^x - 5 \cdot 2^{x+1} = -144$		
	$2^{x}(1-5.2) = -144 \checkmark \\ 2^{x}(-9) = -144$	Common factor✓	
	$2^{x} (-9) = -144$ $2^{x} = 16$		
	$2^x = 2^4 \checkmark$	Same base ✓	(2)
	$x = 4 \checkmark$ 2.2.3 2-16x ^{-3/2} =0	Answer 🗸	(3)
	$2.2.3 \ 2-16x^{-3} = -2$		
	$-10x^{2} = -2$ $x^{-\frac{3}{2}} = \frac{1}{8} \checkmark$	Isolating x✓	
	$\chi^2 = \frac{1}{8}$	Raising both sides by $\frac{-2}{3}$	
	$\begin{array}{l} x = 2^{-3 \times \frac{-2}{3}} \checkmark \\ x = 4 \checkmark \end{array}$	answer√	(3)
	$2.2.4 \sqrt[x]{9} = 243$		
	$\left(\sqrt[x]{9}\right)^x = (243)^x$	Exponential form✓	
	$9 = 3^{5x} \checkmark$ $3^2 = 3^{5x}$		
	$3^{\circ} = 3^{\circ}$ $2 = 5x \checkmark$	Equating the exponents	
	$x = \frac{2}{5} \checkmark$	Equating the exponents \checkmark Answer \checkmark	(3)
3.1	QUESTION 3 Bisects the chord ✓	✓ Answer	(1)
			(1)
3.2	3.2. 1 OF $\perp DC$ (line drawn from centre to the mid-point) $OD^2 = OF^2 + FD^2 \checkmark$	✓ Pythagoras	
	$= 3^2 + 4^2 \checkmark$	✓ Method	
	= 25	✓ answer	(3)
	$\therefore \text{OD} = 5\checkmark$		
	3.2.2 AO = OD = $5\checkmark$ (radii)	√5	
	$AE^2 = AO^2 - OE^2 \text{(Pythagoras)} \checkmark$ $= 5^2 - 4^2$	✓ Pythagoas	
	= 9		
	$AE = 3\checkmark$ AB = 9 \scale\$ (line drawn from the centre \perp to the chord)	$\checkmark AE = 3$ $\checkmark AB = 9$	(4)
	$AB = 3 \cdot ($ (nine drawn from the centre \perp to the chord)	· (110 -)	(+)

	QUESTION 4	
4.1.1	$\hat{A}_2 = \hat{B}_1 = 41^0 \checkmark (< \text{ in the same segment}) \checkmark$	$S \checkmark and R \checkmark$
	$\hat{C}_4 = \hat{B}_1 = 41^0 \checkmark \text{ (tan-chord theorem)} \checkmark$	$S \checkmark$ and $R \checkmark$
	$D_1 = C_4 = 41^0 \checkmark (< s \text{ opp} = \text{sides}) \checkmark$ OR $D_1 = A_2 = 41 (\text{ tan-chord theorem})$	$S \checkmark$ and $R \checkmark$ (6)
4.1.2	(a) $\hat{D}_2 + 34^0 = 78^0 \checkmark$ (tan-chord theorem)	\checkmark S and R
	$\therefore \stackrel{\circ}{D_2} = 44^0 \checkmark$	✓Answer (2)
	(b) $41^{\circ} + B_2 + 44^{\circ} + 34^{\circ} = 180^{\circ} \checkmark$ (opp < <i>s</i> of a cyclic quad)	\checkmark S and R
	$\therefore \hat{B}_2 = 61^{\circ} \checkmark$	$\checkmark \text{Answer} \tag{2}$
	$(c)\overset{\wedge}{D_4} = 41^0 + 61^0 \checkmark \checkmark \qquad (ext. < s \text{ of a cyclic quard})$ $\therefore D_4 = 102^0$	✓ S and R ✓ Answer (2)
	OR $D_4 + 44^\circ + 31^0 = 180^\circ$ (int. $<_s \text{ of } a \varDelta) \checkmark$ $D_4 = 102^\circ \checkmark$ (d) $F + 41^\circ + 41^\circ = 180^\circ$ (int. $< s \text{ of } a \varDelta$) \checkmark	✓ S and R ✓ Answer ✓ S and R
	$F = 98^{\circ} \checkmark$	✓Answer (2)
4.1.3	$ \begin{array}{c} \stackrel{\wedge}{A} + F = 40^{\circ} + 98^{\circ} \checkmark \\ = 138^{\circ} \checkmark \qquad \checkmark \\ \stackrel{\neq}{} 180^{\circ} \\ \stackrel{\wedge}{A} + F \neq 180^{\circ} \\ \stackrel{\wedge}{} \cdot F \neq 180^{\circ} \\ \stackrel{\circ}{} \cdot F \neq $	 ✓ statement ✓ 138° ✓ ≠ 180° ✓ Conclusion (4)
4.2		

	PROOF: Construction Join C to A and A to E \checkmark $\angle A_1 = 2\angle B$ $\angle at \ centre = 2\angle at \ circum) \checkmark$ $A_2 = 2D$ $\angle at \ centre = 2\angle at \ circum) \checkmark$ But $A_1 + A_2 = 360$ $\angle round \ a \ point) \checkmark$ $\therefore 2B + 2D = 360^0$ $\therefore B + D = 180^0 \checkmark$	 ✓ Construction ✓ S/R ✓ S/R ✓ S/R
1.2		✓ Conclusion (5)
4.3	4.3.1 ∠E ₂ = ∠C ext ∠ of a cyclic quad. ✓ But ∠C = ∠D ₃ corresponding angles, CBIED✓ ∠E ₂ = ∠D ₃ EF = DF ✓ sides opp. Equal angles 4.3.2 ∠F = 180° - 2x ✓ sum of angles in a Δ✓ 4.3.3 ∠C = ∠D = x ✓ (Corresp. angles. CBIED) ✓ ∠A ₁ = 2∠C = 2x (∠ at centre) ✓ ∠A ₁ + = ∠F = 2x + 180° - 2x = 180° ∴ BACF is a cyclic quad (Opp. angles supplementary) ✓	✓ S/R ✓ S/R ✓ Conclusion (3) ✓ ✓ S/R (2) ✓ ✓ S/R ✓ S/R ✓ S/R ✓ S/R ✓ S/R ✓ 180° ✓ reason
4.4	4.4.1 $F_1 = x$ tan-chord theorem \checkmark $B_1 = 2x \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	✓ S/R ✓ S/R ✓ S/R
	$G_2 = 90^0 - x$ ($\angle s. \circ pp = sides$) \checkmark	✓S/R

$\hat{G}_1 = \hat{G}_2 \qquad \checkmark$ CG bisect the BGH	✓S (5
4.4.2 $\overrightarrow{CEF} = 90^{\circ} - x \checkmark (opp \angle s \text{ of cyclic quard})\checkmark$ $\overrightarrow{D}_2 = 90^{\circ} \checkmark (line from centre \perp to chord) \checkmark$ $\overrightarrow{GBD} = 90^{\circ} + x \qquad (ext \angle of \Delta)$ $\therefore \overrightarrow{GBD} = \overrightarrow{CEF}$	✓S ✓R ✓S ✓R ✓SR (5)

 $\mathbf{TOTAL} = \mathbf{100}$